Warm Up

- 1. What will be the velocity of a 1200. kg car after a 95.5 kg person pushes off if it with a velocity of 25.7 m/s?
- 2. What is the work done if a 72.8 kg person climbed a distance of 12.5 m up a climbing wall?
- 3. What is the energy of a 1045. kg car traveling at 35.7 m/s?
- 4. What is the energy of a 1045. kg car that is parked in a parking deck that is 35.7 m off the ground?
- 5. What is the velocity of a merry-go-round if a 28.5 kg child sitting 2.38 m from the center is experiencing 58.9 N of force?

Target

• I can explain why all energy is conserved.

Conservation of Energy

- The law of conservation of energy states that energy cannot be created nor destroyed. It can, however, change forms.
- This means that energy can go from one form of energy and become a different form of energy.

An example of this is mechanical energy. The total energy of the system is equal to kinetic and potential energy of that system.

• E = KE + PE

- This means the mechanical energy before an event is equal to the mechanical energy after the event.
- $KE_b + PE_b = KE_a + PE_a$

Practice

- If a 55 kg person on a skateboard goes down a 20 m hill at a speed of 5 m/s, what will be the speed of the person when he gets to the top of a 12 m hill next to the first hill?
- Answer:

Practice

- How fast will a 0.25 kg pool ball be going when it hits the ground if it falls off a 0.8 m high pool table?
- Answer:

• A pendulum is an example of conservation of energy.

- When a pendulum is at the top of its swing, all of its energy is potential.
- As it starts its swing, the potential energy is converted into kinetic energy.

• At the bottom of the swing, all of its energy is kinetic.

• As it swings back up, the kinetic energy is converted back into potential energy.

When <u>energy</u> is converted from one form into another, some energy is converted into thermal energy and sound energy.
Usually, this new energy causes the temperature of objects to rise slightly.

Energy is also conserved when it comes to mass.

 Einstein's E = mc² states that a small amount of mass can be converted into a large amount of energy.

Summary

- Energy cannot be created nor destroyed but can change forms.
- Potential and Kinetic energy can be converted into each other.
- Energy can be converted between the forms also.
- Some energy is lost as heat.

Assignment

• Energy Calculations